Solar Thermal Conversion

Major Functions:

- Solar Radiation collection and concentration
- Conversion to heat
- Storage of energy
- Generation of electricity

Solar Thermal Conversion

Solar energy is collected as high-temperature heat, generally by means of mirrors or lenses that track the motion of the sun and direct a concentrated solar flux onto a receiver. Temperatures up to 1000 K can be generated by this means, high enough to produce the high-pressure steam used in modern steam turbines to generate electricity.

Can solar thermal conversion become economically competitive with combustion of fossil fuels as a source of high-temperature heat?

What are the best designs for the collection and conversion of sunlight in a solar thermal facility?

What are the best uses of the high-temperature heat from solar thermal conversion?

Collection

The temperature to which a surface is heated by a certain flux of incident solar energy is determined by the balance of incident radiation and loss by conduction, convection and radiation.

- The use of selective surfaces that absorb visible sunlight but do not lose energy by infrared radiation will achieve high temperatures.
- The temperature obtained can be increased by boosting the flux of incident sunlight by use of concentrating mirrors or lenses.
- A fairly low concentration ratio, obtainable with simple optics, can be combined with a selective surface to efficiently produce temperatures high enough for electrical power generation.
- Three basic collection geometries of sunlight for solar thermal conversion: non-concentrating, concentrating to a line, and concentrating to a point.

Collection

Non concentrating collectors: Industrial process heat at moderate temperatures (About 18% of the fuel consumption in the United States is for generation of industrial process heat at moderate temperatures (process steam) and another 11.5% is used for high-temperature process heat). Low temperature heat for domestic water heating.

Concentration to a line: concentration ratios up to 20 with selective surfaces to achieve high enough temperatures for electrical generation

Point focusing: concentration ratios up to 1000, with out the need for use of selective surfaces. *(Thermochemical conversion - splitting of water to produce hydrogen)*

Concentration Ratio

Area concentration ratio (geometric):

$$C = \frac{A_a}{A_r}$$

Optical concentration ratio: I_r is the averaged irradiance

$$C_O = \frac{\frac{1}{A_r} \int I_r dA_r}{I_a}$$

 \mathcal{I}_a is the insolation incident on the collector aperture

Collector Configurations

Goal: Increasing the radiation flux on receivers

a) Tubular absorbers with diffusive back reflector; b) Tubular absorbers with specular cusp reflector; c) Plane receiver with plane reflector; d) parabolic concentrator; e) Fresnel reflector f) Array of heliostats with central receiver

Sun Radiation Concentration

- (a) parabolic trough collector
- (b) linear Fresnel collector
- (c) central receiver system with dish collector and
- (d) central receiver system with distributed reflectors

Parabolic-Trough Technology

Parabolic Trough systems use parabolic trough-shaped mirrors to focus sunlight on thermally efficient receiver tubes that contain a heat transfer fluid (Figure 1). This fluid is heated to 390°C (734°F) and pumped through a series of heat exchangers to produce superheated steam which powers a conventional turbine generator to produce electricity. Nine trough systems, built in the mid to late 1980's, are currently generating 354 MW in Southern California. These systems, sized between 14 and 80 MW, are hybridized with up to 25% natural gas in order to provide dispatchable power when solar energy is not available.

Parabolic-Trough Technology

100000

Solar Electric Generating Station (SEGS)

Table 1. Parabolic-Trough Project Status (as of December 1998)

Country/State	Plant Configuration	Status
India	135 MW, ISCCS	GEF approved, waiting for RFP**
Egypt	Open	GEF PDF*** B Grant approved
Morocco	Open	GEF government request
Mexico	ISCCS	GEF government request
Greece	50 MW, SEGS*	IPP development, EU****Thermie Grant
Jordan	ISCCS or SEGS	On hold pending conventional IPP
Spain	50 MW, SEGS	Waiting outcome of solar tariff
Arizona	15-30 MW, ISCCS	Waiting outcome of solar portfolio standard

*solar electric generating systems

**request for proposals

***project development funding

****European Union

Figure 3. SEGS VI historical performance

Solar-electric efficiency : 10% Levelized energy cost: \$0.04-0.05/kWh

Parabolic-Trough System

Figure 2. Integrated Solar Combined Cycle System [1].

Solar Dish-engine

Dish/Engine systems use an array of parabolic dish-shaped mirrors (stretched membrane or flat glass facets) to focus solar energy onto a receiver located at the focal point of the dish (Figure 3). Fluid in the receiver is heated to 750°C (1,382°F) and used to generate electricity in a small engine attached to the receiver. Engines currently under consideration include Stirling and Brayton cycle engines. Several prototype dish/engine systems, ranging in size from 7 to 25 kW_e, have been deployed in various locations in the U.S. and abroad.

High optical efficiency and low startup losses make dish/engine systems the most efficient (29.4% record solar to electricity conversion) of all solar technologies. In addition, the modular design of dish/engine systems make them a good match for both remote power needs in the kilowatt range as well as hybrid end-of-the-line grid-connected utility applications in the megawatt range. If field validation of these systems is successful in 1998 and 1999, commercial sales could commence as early as 2000.

Solar Dish-engine

Power Tower

During daylight hours, 2000 mirrors at Solar Two track the sun and store its energy as heat in molten salt. This energy can then be used to generate electricity when needed, such as during periods of peak demand for power.

Power Tower systems use a circular field array of heliostats (large individually-tracking mirrors) to focus sunlight onto a central receiver mounted on top of a tower (Figure 2). The first power tower, Solar One, which was built in Southern California and operated in the mid-1980's, used a water/steam system to generate 10 MW of power. In 1992, a consortium of U.S. utilities banded together to retrofit Solar One to demonstrate a molten-salt receiver and thermal storage system.

The addition of this thermal storage capability makes power towers unique among solar technologies by promising dispatchable power at load factors of up to 65%. In this system, molten-salt is pumped from a "cold" tank at 288°C

 (550°F) and cycled through the receiver where it is heated to 565°C $(1,049^{\circ}\text{F})$ and returned to a "hot" tank. The hot salt can then be used to generate electricity when needed. Current designs allow storage ranging from 3 to 13 hours.

"Solar Two" first generated power in April 1996, and is scheduled to run for a 3-year test, evaluation, and power production phase to prove the molten-salt technology. The successful completion of Solar Two should facilitate the early commercial deployment of power towers in the 30 to 200 MW range.

Power Tower - Solar two

Power Output: Solar Two produced 1633 MWh over a 30-day period, exceeding its one-month performance measure of 1500 MWh of power production; the plant also produced a record turbine power output of 11.6 megawatts.

Source: US DOE

Solar Power Tower

Molten-salt power tower system

Electric power from sunlight by focusing concentrated solar radiation on a towermounted heat exchanger. Best suited for large scale applications: 30-400 MW

Liquid salt at 290°C is pumped from a storage tank through the receiver where it is at 565°C and then to a hot storage tank.

The hot salt is pumped to a steam generating system that produces superheated steam for a conventional Rankine cycle turbine generator system.

Source: Sandia National Laboratories

Solar Power Tower

Electricity dispatchability

Fable 1. Experin	iental power		1	-	
		Power			
		Output			Operation
Project	Country	(MWe)	Heat Transfer Fluid	Storage Medium	Began
SSPS	Spain	0.5	Liquid Sodium	Sodium	1981
EURELIOS	Italy	1	Steam	Nitrate Salt/Water	1981
SUNSHINE	Japan	1	Steam	Nitrate Salt/Water	1981
Solar One	USA	10	Steam	Oil/Rock	1982
CESA-1	Spain	1	Steam	Nitrate Salt	1983
MSEE/Cat B	USA	1	Molten Nitrate	Nitrate Salt	1984
THEMIS	France	2.5	Hi-Tec Salt	Hi-Tec Salt	1984
SPP-5	Russia	5	Steam	Water/ Steam	1986
TSA	Spain	1	Air	Ceramic	1993
Solar Two	USA	10	Molten Nitrate Salt	Nitrate Salt	1996

Table 2. Comparison of solar-energy storage systems.

	Installed cost of energy storage for a 200 MW plant (\$/kWhr _e)	Lifetime of storage system (years)	Round-trip storage efficiency (%)	Maximum operating temperature (°C/°F)
Molten-Salt Power Tower	30	30	99	567/1,053
Synthetic-Oil Parabolic Trough	200	30	95	390/734
Battery Storage Grid Connected	500 to 800	5 to 10	76	N/A

Thermal Storage

Thermal Loss

Figure 3. Cool down of hot storage tank at Solar Two.

Source: www.sbp.de

Solar Chimney/Tower

A solar chimney power plant has a high chimney (tower), with a height of up to 1000 m, and this is surrounded by a large collector roof, up to 130 m in diameter, that consists of glass or resistive plastic supported on a framework (see artist's impression). Towards its centre, the roof curves upwards to join the chimney, creating a funnel. The sun heats up the ground and the air underneath the collector roof, and the heated air follows the upward incline of the roof until it reaches the chimney. There, it flows at high speed through the chimney and drives wind generators at its bottom. The ground under the collector roof behaves as a storage medium, and can even heat up the air for a significant time after sunset. The efficiency of the solar chimney power plant is below 2%, and depends mainly on the height of the tower, and so these power plants can only be constructed on land which is very cheap or free. Such areas are usually situated in desert regions. However, the whole power plant is not without other uses, as the outer area under the collector roof can also be utilized as a greenhouse for agricultural purposes. As with trough and tower plants, the minimum economical size of solar chimney power plants is also in the multi-megawatt range.

Design of Commercial Solar Updraft Tower Systems – Utilization of Solar Induced Convective Flows for Power Generation

Jörg Schlaich, Rudolf Bergermann, Wolfgang Schiel, Gerhard Weinrebe

Solar Chimney/Tower

Capacity	MW	5	30	100	200
tower height	m	550	750	1000	1000
tower diameter	m	45	70	110	120
collector diameter	m	1250	2900	4300	7000
electricity output A	GWh/a	14	99	320	680

^A at a site with an annual global solar radiation of 2300 kWh/(m²a)

Advanced Tower

Commercial Solar Plant Costs

Solar Electric Generating Systems (SEGS)

Levelized energy cost

System Efficiency

US Solar Radiation Map

Source: US DOE

The Solar Resource

Solar thermal Electric Power systems

	Parabolic Trough	Power Tower	Dish/Engine
Size	30-320 MW*	10-200 MW*	5-25 kW*
Operating Temperature (°C/°F)	390/734	565/1,049	750/1,382
Annual Capacity Factor	23-50%*	20-77%*	25%
Peak Efficiency	20%(d)	23%(p)	29.4%(d)
Net Annual Efficiency	11(d')-16%*	7(d')-20%*	12-25%*(p)
Commercial Status	Commercially	Scale-up	Prototype
	Available	Demonstration	Demonstration
Technology Development Risk	Low	Medium	High
Storage Available	Limited	Yes	Battery
Hybrid Designs	Yes	Yes	Yes
Cost			
\$/m ²	630-275*	475-200*	3,100-320*
\$/W	4.0-2.7*	4.4-2.5*	12.6-1.3*
\$/W _p [†]	4.0-1.3*	2.4-0.9*	12.6-1.1*

Values indicate changes over the 1997-2030 time frame.

\$/W_p removes the effect of thermal storage (or hybridization for dish/engine). See discussion of thermal storage in the power tower TC and footnotes in Table 4.

(p) = predicted; (d) = demonstrated; (d') = has been demonstrated, out years are predicted values

Flat Plate Collectors -Domestic Heating

Flat-Plate Collectors

- In the solar collector, the energy transfer is from source of radiant energy to a fluid.
- The flux of incident radiation $\sim 1000 \text{ W/m}^2$ (it is variable)
- The wavelength range: 0.3 3.0 μm
- Energy delivery at moderate temperatures ~ 400K
- Use both beam and diffusive solar radiation do not require tracking the Sun.
- Major applications: solar water heating, building heating, air conditioning and industrial process heat.
- Maximum temperature ~ 400K

Basic Flat-Plate Collector

Water Heater Configurations

Natural circulation system

Antifreeze loop and internal heat exchanger

One tank forced circulation system

Antifreeze loop and external heat exchanger

Liquid Heating Collector System

Solar Thermal Conversion

Technology	Temperature (°C)	Concentrati	Tracking	Maximum
		on ratio		conversion
				efficiency
				(Carnot)
Dish	50 - 1000	80 - 8000	Two-axis	80%
Concentrators				
Heliostat field	500-800	600-1000	Two-axis	73%
+ Central				
receiver				
Parabolic	260-400	8-90	One-axis	56%
trough				
Flat plate	30-100	1		21%
collector				
		-	•	•

Southwest Strategy

Resource Availability:

	Solar	Land
	Capacity	Area
State	(MW)	(Sq Mi)
AZ	1,652,000	12,790
CA	742,305	5,750
NV	619,410	4,790
NM	1,119,000	9,157
Total	4,132,715	32,487

The table and map represent land that has no primary use today, exclude land with slope > 1%, and do not count sensitive lands.

Solar Energy Resource \geq 7.0 kWhr/m²/day (includes only excellent and premium resource)

Current total generation in the four states is 83,500 MW.

Solar Thermal Power Plant Potential

Comparably low power generation costs can be achieved wherever insolation reaches 1,900 kWh per square meter and year or more.

