

Sustainable Energy Science and Engineering Center

Main Energy Storage Market Segments

1. Utility/industrial applications including: grid reinforcement, renewables integration and uninterruptible power supply (UPS) Applications

2. Transport / mobile applications including: on-board power for vehicles, new drive trains (electric and hybrid electric vehicles) and leisure applications (caravanning)

3. Portable applications including: computing, cell-phones and cameras (the 3 'C's').

Generic Storage Systems

Electrochemical systems batteries and flow cells

Mechanical systems

fly-wheels and compressed air energy storage (CAES)

Electrical systems super-capacitors and superconducting magnetic energy storage (SMES)

Chemical systems hydrogen cycle (electrolysis -> storage -> power conversion)

Thermal systems sensible heat (storage heaters) and phase change

Potential Fuel

Energy Sources

Typical Chemical Energy Density

Hydrogen
Ethanol
Ammonia
Automotive Gasoline
Methane
Methanol

142.0 MJ/kg 29.7 MJ/kg 17.0 MJ/kg 45.8 MJ/kg 55.5 MJ/kg 22.7 MJ/kg

(Source: Chemical Energy, The Physics Hyper text Book)

Energy Density

Fuel

Typical Stored Chemical Energy Density

Hydrogen Ethanol Ammonia Automotive Gasoline Methane Methanol

7.1 MJ/kg	@ 5wt%
26.7 MJ/kg	@ 90wt%
13.6 MJ/kg	@ 80wt%
41.2 MJ/kg	@ 90wt%
44.5 MJ/kg	@ 80wt%
20.4 MJ/kg	@ 90wt%

Energy Densities

Fuel	Hydrog fractior	en weight 1	Ambient		uid volui rgy densi		Mass er density	
Hydroger	า	1	Gas		8.4-10.4 ³	120		
Methane	0.25	Gas		21(17.8) ²	50 (43) ²			
Ethane		0.2	Gas		23.7		47.5	
Propane		0.18	Gas (liqu	uid)	22.8		46.4	
Ammonia	3	0.18	Gas (liqu	uid)	13.1		17.0	
Gasoline			0.16	Liquid		31.1		44.4
Ethanol		0.13	Liquid		21.2		26.8	
Methanol		0.12	Liquid		15.8		19.9	

¹ A gas at room temperature, but normally stored as a liquid at moderate pressure.

² The larger values are for pure methane. The values in parentheses are for a "typical" Natural Gas.

³ The higher value refers to hydrogen density at the triple point

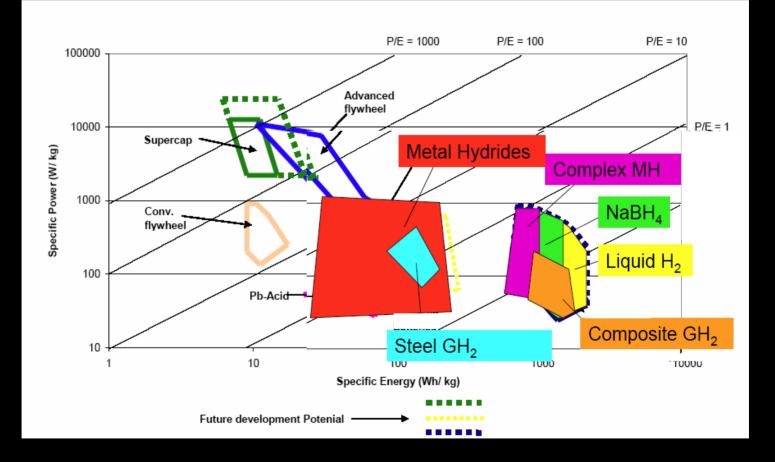
Energy Density in wh/liter

Material	Volumetric	Gravimetric
Diesel	10942 Wh/I	13762Wh/kg
Gasoline	9,700 Wh/I	12,200 Wh/kg
LNG	7,216 Wh/I	12,100 Wh/kg
Propane	6,600 Wh/I	13,900 Wh/kg
Ethanol	6,100 Wh/I	7,850 Wh/kg
Methanol	4,600 Wh/I	6,400 Wh/kg
Liquid H2	2600 Wh/I	39,000 Wh/kg
150 Bar H2	405 Wh/l	39,000 Wh/kg
Lithium	250 Wh/I	350 Wh/kg
Nickel Metal Hydride	100 W-h/L	60Wh/kg
Lead Acid Battery	40 Wh/l	25 Wh/kg
Compressed Air	17 Wh/l	34 Wh/kg

Objective

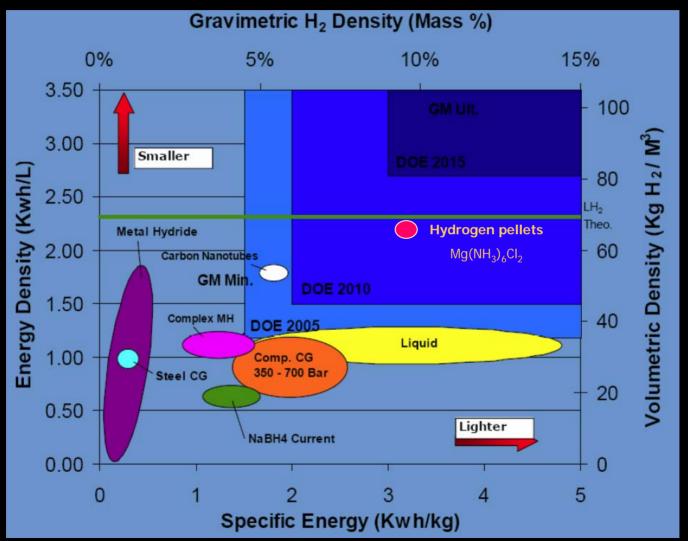
To achieve adequate stored energy in an efficient, safe and cost effective system.

Current Status of H₂ Storage Technologies


		-		
Hydrogen Storage Technology	Current Volumetric Storage Density (g H ₂ /L)	Current Gravimetric Storage Density (wt %)	+ of Storage Technology	– of Storage Technology
5000 psi (350 bar)*	~12.5 g H ₂ /L = 1.5 MJ/L	~ 2.7 wt%	Known Technology	H ₂ under pressure, g H ₂ /L, Infrastructure, H ₂ not humidified
10000 psi (700 bar)*	~24.2 g H ₂ /L = 2.9 MJ/L	~ 3.3 wt%	Known Technology	H ₂ under pressure, g H ₂ /L, Infrastructure, H ₂ not humidified
Liquid*	~37.0 g H ₂ /L = 4.4 MJ/L	~ 5.0 wt%	Known Technology	Boil Off, Infrastructure
Solid Metal Hydrides	?	?	?	
Hydrogen on Demand™ NaBH₄ Chemical Hydride	~> 22 g H ₂ /L = > 2.5 MJ/L	> 4.0 wt%	H ₂ is not under pressure, system design, Infrastructure	Regeneration, Fuel Handling Strategy

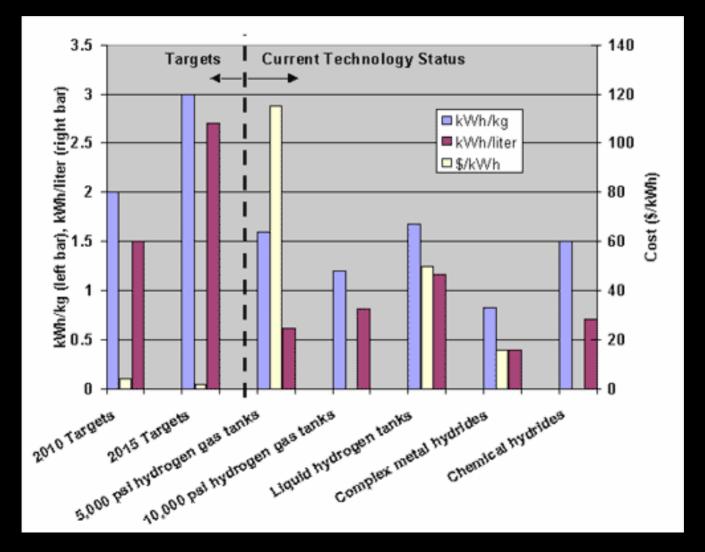
Gravimetric storage density: the gravimetric storage density is the weight of the hydrogen being stored divided by the weight of the storage and delivery system proposed

Energy Storage



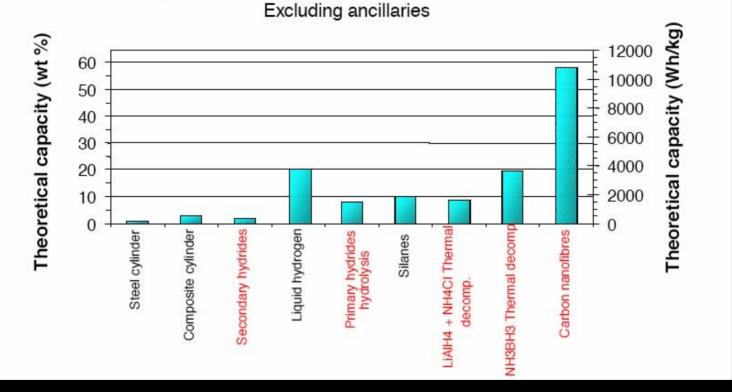
Source: Ian Edwards, ITI Energy, May 24th, 2005


Hydrogen Storage



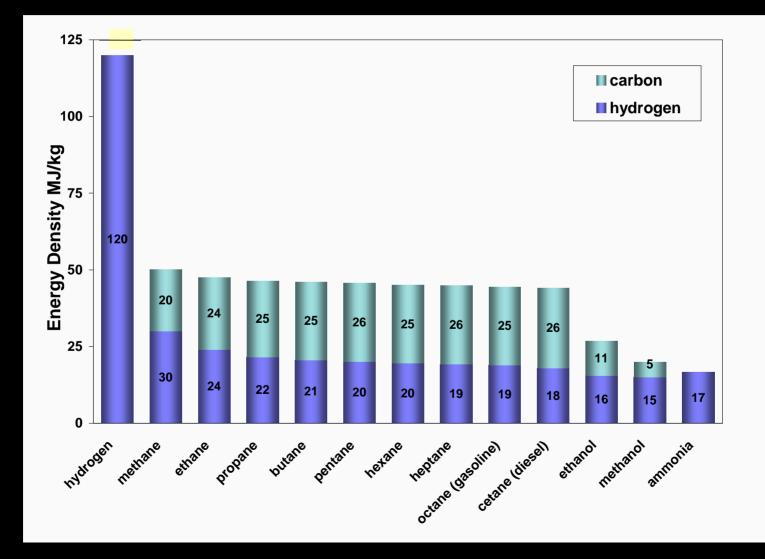
Source: Ian Edwards, ITI Energy, May 24th, 2005

Technology Status

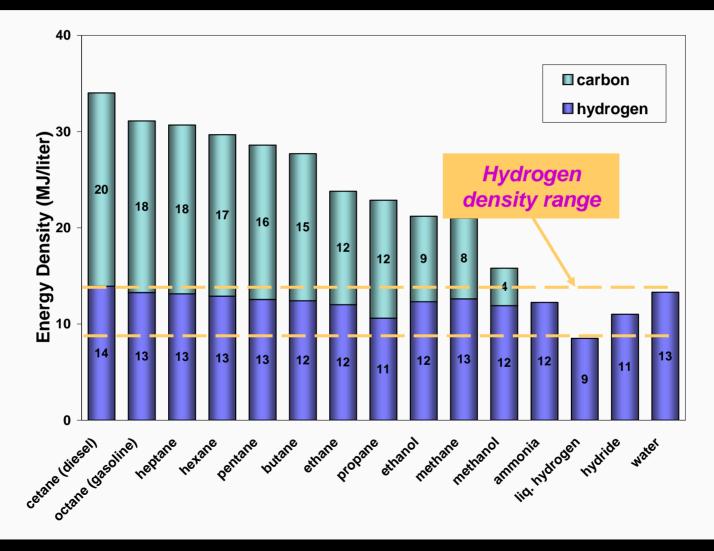


Storage Methods

Hydrogen storage methods

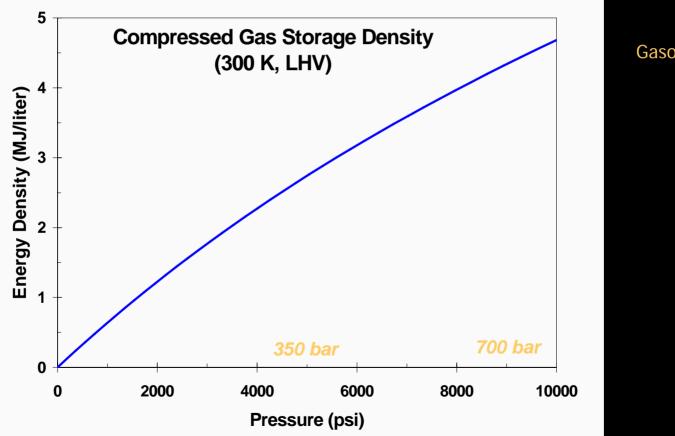


Specific energy of fuels (LHV)



Sustainable Energy Science and Engineering Center

Energy Densities (LHV) in Liquid state



Compressed Gas

Gasoline: 13 MJ/L

Compressed Gas

- increased pressure (>700 bar)
 - stronger, lighter composite tanks (cost)
 - hydrogen permeation
 - non-ideal gas behavior
- conformable tanks
 - maximum volume gain ~20% (cylind./rect. volumes)
 - some increase in weight
- microspheres
 - multiple shell volumes
 - close-packed packing density ~60% of volume
 - hydrogen release/reload mechanism

Compressed Gas Cylinders

Carbon fiber wrap/polymer liner tanks are lightweight and commercially available.

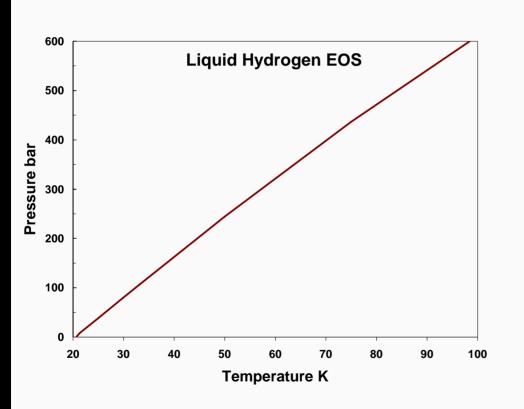
weight

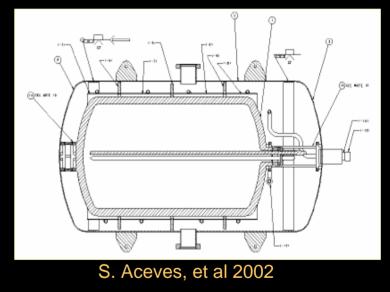
6 wt.% 7.5 wt.% 10 wt.% specific energy 7.2 MJ/kg 9.0 MJ/kg 12 MJ/kg

Energy density is the issue:

Pressure 350 bar 700 bar

Gas density 2.7 MJ/L 4.7 MJ/L


System density 1.95 MJ/L 3.4 MJ/L



High Pressure Cryogenic Tank

Estimated energy density: <u>4.9 MJ/L</u> (Berry 1998)

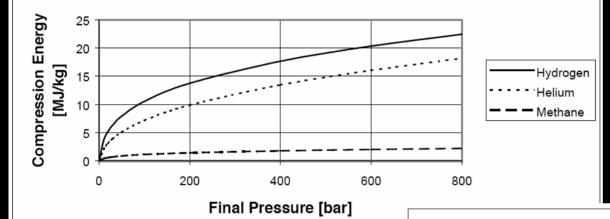
- reduces temperature requirements
- eliminates liquifaction requirement
- essentially eliminates latency issue

Liquid Storage

Requires cryogenic systems

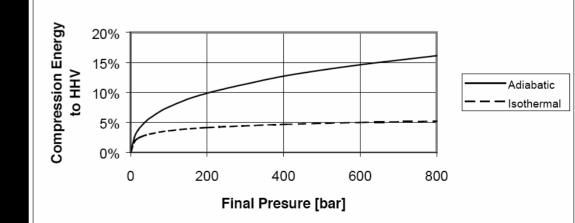
- Equilibrium temperature at 1 bar for liquid hydrogen is ~20 K.
- Estimated storage densities¹

Berry (1998)	4.4 MJ/liter
Dillon (1997)	4.2 MJ/liter
Klos (1998)	5.6 MJ/liter


- Issues with this approach are:
 - dormancy.
 - energy cost of liquifaction.
 - ¹ J. Pettersson and O Hjortsberg, KFB-Meddelande 1999:27

Gaseous Hydrogen Storage

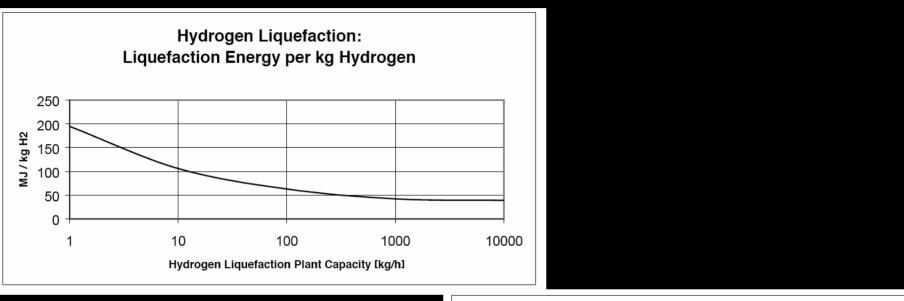
Energy Required for Adiabatic Compression of Hydrogen, Helium and Methane



Hydride storage of hydrogen may be compared to the compression of hydrogen

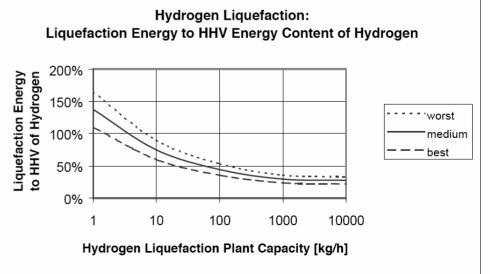
Higher Heating value of Hydrogen: 142 MJ/kg

he Future of Hydrogen Economy: Bright or Bleak? [•] Eliasson and Ulf Bossel, ABB Switzerland Ltd.

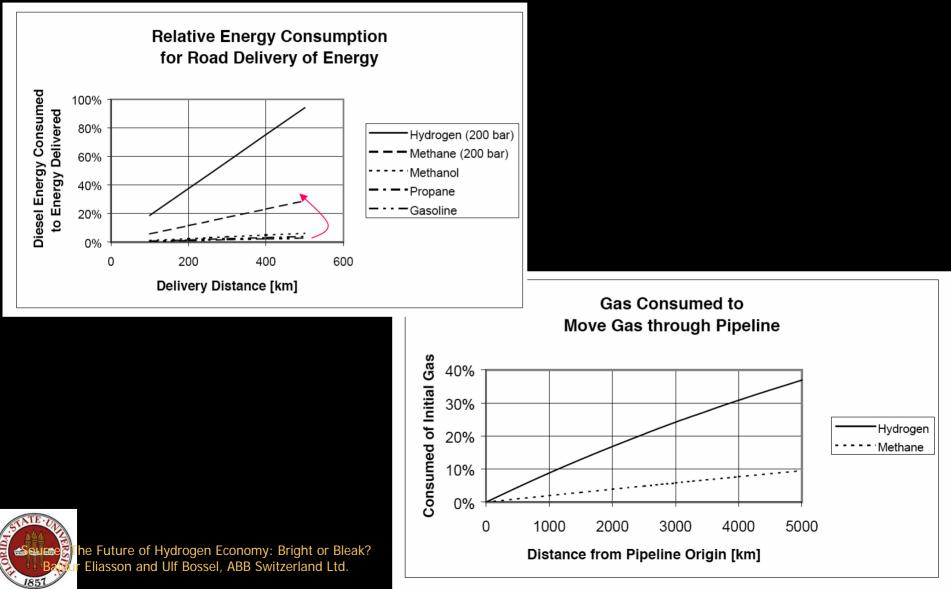


Adiabatic and Isothermal Compression Energy of Hydrogen Compared to HHV

Sustainable Energy Science and Engineering Center


Hydrogen Storage - Liquefaction

Total energy requirement for liquefaction of 1 kg of H₂



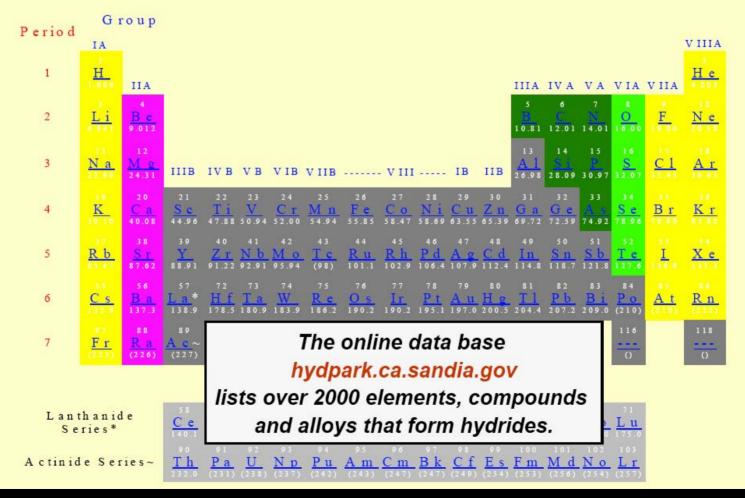
he Future of Hydrogen Economy: Bright or Bleak? ^r Eliasson and Ulf Bossel, ABB Switzerland Ltd.

Hydrogen Delivery - Pipelines

Hydrides

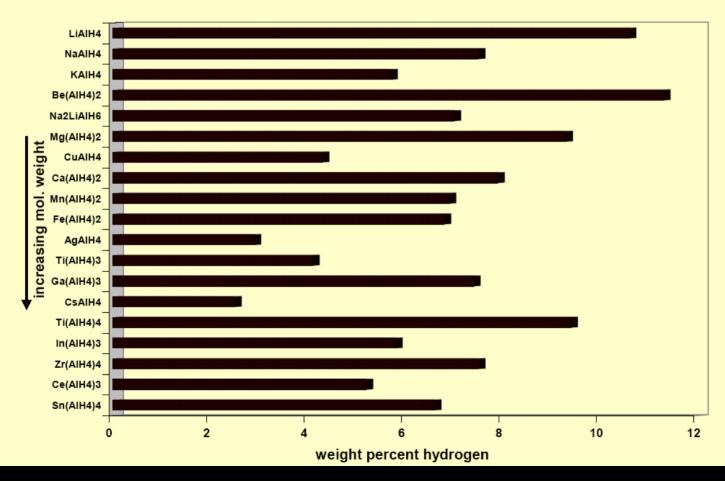
Chemically bond hydrogen in a solid material

- This storage approach should have the highest hydrogen packing density.
- However, the storage media must meet certain requirements:
 - reversible hydrogen uptake/release
 - lightweight with high capacity for hydrogen
 - rapid kinetic properties
 - equilibrium properties (P,T) consistent with near ambient conditions.
- Two solid state approaches
 - hydrogen absorption (bulk hydrogen)
 - hydrogen adsorption (surface hydrogen)
 - including cage structures



Hydrides

Where do we start?



Alanates

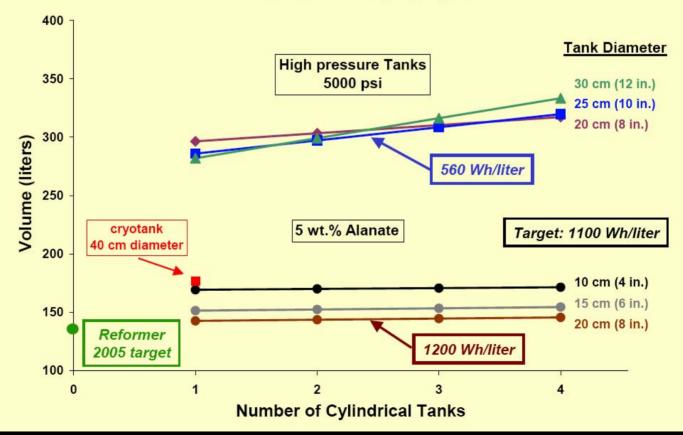
Total hydrogen content of some alanates

Complex Hydrides

Issues with complex hydrides

- Reversibility
 - role of catalyst or dopant
- Thermodynamics
 - pressure, temperature
- Kinetics
 - long-range transport of heavy species
- Cyclic stability
- Synthesis
- Compatibility/safety

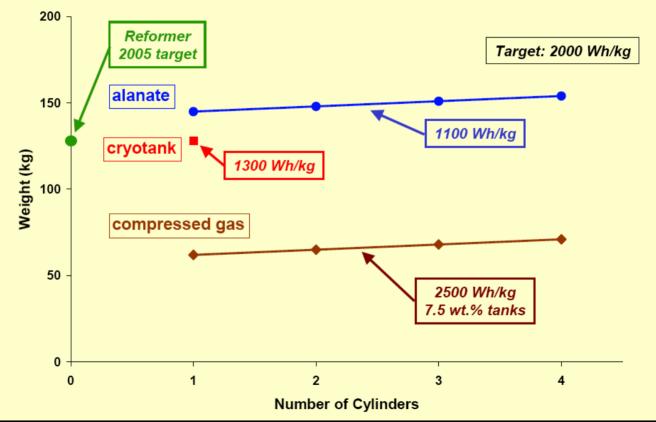
only NaAlH₄ has been studied in detail to date this material serves as a model system to better understand other complex hydrides



Hydrogen Storage Volume

5 kg H₂ system volumes

Volumes of 5 kg H₂ Systems



Hydrogen System Weight

5 kg H₂ system weights

System weights for 5 kg H₂

Future

Where do we go from here?

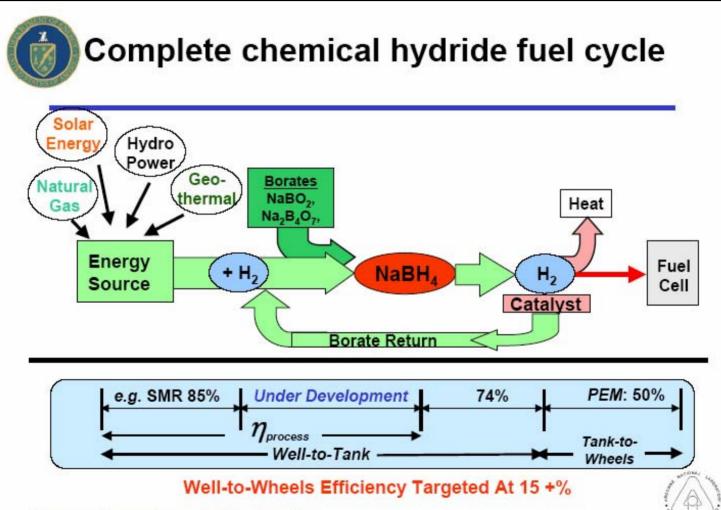
- What's beyond NaAlH₄?
 - Capacity appears limited to ~5 wt.%
 - modifications or new complexes needed.
- Some improvements in weight, volume and cost can be realized by better container engineering.

Intermetallic hydrides were studied for thirty years before doped alanates provided a significant improvement in capacity.

We need to be a little faster!

US DOE Strategy

Advanced/complex hydrides-targets


- NaAlH₄ capacity limited to about 5.6 wt%
 Interim goal (5-year) of 6 wt%
- Need 8 wt% hydrogen storage capacity for hydride if BOP adds 20 %
- 80% retained capacity after 500 cycles

US DOE Strategy

Schematic courtesy of Millenium Cell

Complex Hydrides

Chemical Hydrides – H₂ Generation by Hydrolysis

Reaction	wt%H ₂	Capacity,
	Yield	kWh/kg
$LiH + H_2O_{\rightarrow} LiOH + H_2$	7.7	1.46
$NaH + H_2O_{\rightarrow} NaOH + H_2$	4.8	0.91
$CaH_2 + 2H_2O_{->}Ca(OH)_2 + 2H_2$	5.2	0.99
$\text{LIAIH}_4 + 4 \text{H}_2\text{O}_{->} \text{LIOH} + \text{AI(OH)}_3 + 4 \text{H}_2$	7.3	1.38
$\text{LiBH}_4 + 4 \text{H}_2\text{O}_{->} \text{LiOH} + \text{H}_3\text{BO}_3 + 4 \text{H}_2$	8.6	1.63
$NaAlH_4 + 4 H_2O_{->} NaOH+ Al(OH)_3 + 4 H_2$	6.4	1.21
$NaBH_4 + 4 H_2O_{\rightarrow} NaOH + H_3BO_3 + 4 H_2$	7.3	1.38

Complex Hydrides

Hydrogen storer	Mass, kg	Volume, I	Cost, US\$	Reference
LiH	1.7	3.7	109	1
CaH ₂	4.5	4.0	104	1
NaBH ₄ (35 wt% aqueous)	6.21	6.21	102	1 & 2
H ₃ BNH ₃	2.38	3.21	390-525	
1. V.C.Y. Kong. et al., Int. J	Hydrogen F	nergy 24, 6	65-75 1999	

 V.C. Y. Kong, et al., Int. J. Hydrogen Energy, 24, 865-75, 1999
S.C. Amendola, et al., Proceedings of the Power Sources Conference, 39th, 176-79, 2000

Fuel Tank Problem

Background

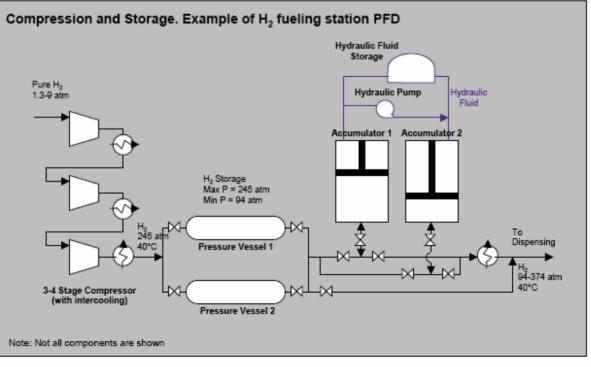
Compact, light, efficient hydrogen-storage technology is a key enabler for fuel cell vehicles and the use of renewable energy in vehicles.

- The use of stored hydrogen is likely key to the success of FCVs, provided the hydrogen storage method is:
 - Compact, and light-weight
 - Is consistent with low-cost, energy-efficient hydrogen production
 - Allows easy refueling and safe operation
- A vision of hydrogen as a vehicle energy carrier offers the possibility of an eventual transition to use of a wide range of renewable resources for vehicles
- Better hydrogen storage could lead to cost-reduction of hydrogen fuel as it could allow the use of remote resources and long-distance transport
- However, until now hydrogen storage has been more a barrier than an enabler to all these technologies because of problems with:
 - Weight &volume
 - Energy use & cost
 - Fueling infrastructure
- Current storage materials do not offer clear proven advantages over compressed or liquid hydrogen storage

Current Status

Current Storage System Characteristics Volume and Weight

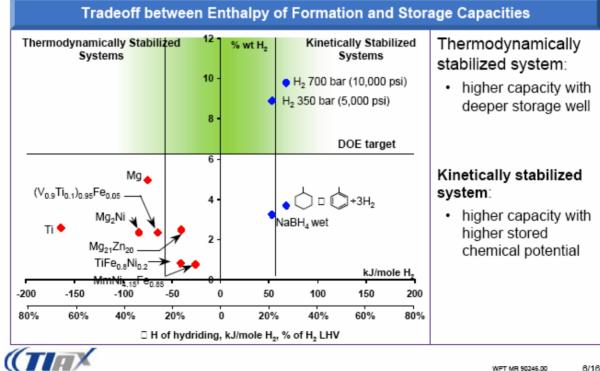
Due to system-level limitations some current hydrogen storage systems meet some of the requirements but none meet all of the requirements.



Compressed Gas System Requirements

Compressed Hydrogen System System Requirements

The high pressure cH₂ compression and storage scheme incorporates primary compressors, intermediate pressure storage, and accumulators.



Storage System Requirements

Current Storage System Characteristics Storage Density and Energy Efficiency

High storage density systems also appear to require higher energy to either store or liberate the hydrogen for current materials.

Improvements

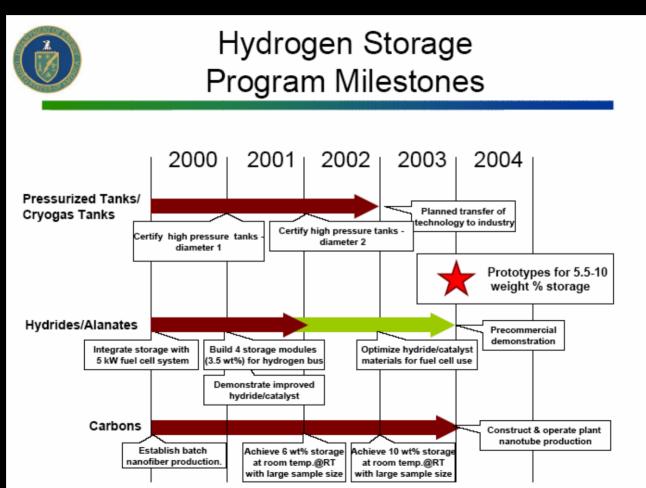
Path to Improvement

Improving storage capacity will require improvement in material performance that will also enable a better system design.

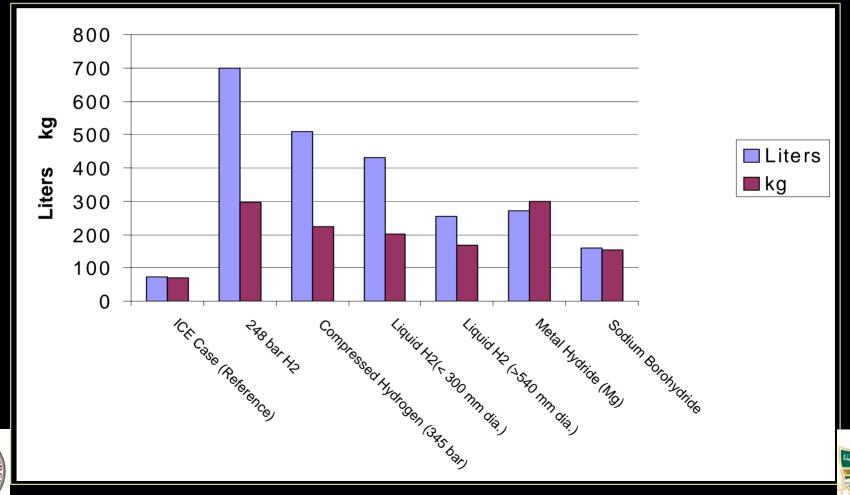
- · Better advanced storage materials are needed that will have:
 - Lower weight
 - Smaller volume
 - Lower cost
 - Better stability
- Additional material requirements must be met to allow improvement in system-level characteristics:
 - Low energy use for hydrogen liberation
 - Easy and energy efficient "recharging" or recycling
 - Low-temperature and pressure operation
- · Achieving the necessary improvements will require:
 - A solid understanding of the fundamentals of hydrogen storage
 - Invention
 - Solid experimentation

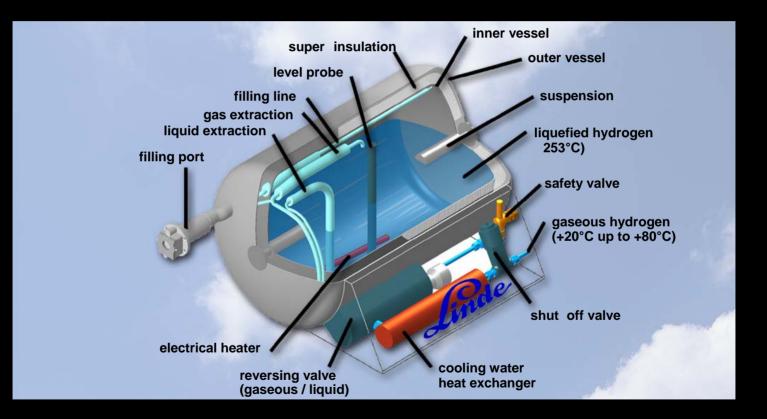
US DOE Targets

DOE Technical Targets: On-Board Hydrogen Storage


	Units	Target	Status Physical Storage	Status Chemical Storage
Storage Weight Percent	%	6	5.2	3.4
Energy Efficiency	%	97	94	88
Energy Density	W-h/L	1100	800	1300
Specific Energy	W-h/kg	2000	1745	1080
Cost	\$/kW-h	5	50	18
Operating Temperature	°C	-40–50°C	-40–50°C	-20–50°C
Start-Up Time To Full Flow	sec	15	<1	<15
Hydrogen Loss	scc/hr/L	1.0	1.0	1.0
Cycle Life	Cycles	500	>500	20-50
Refueling Time	min	<5	TBD	TBD
Recoverable Usable Amount	%	90	99.7	>90

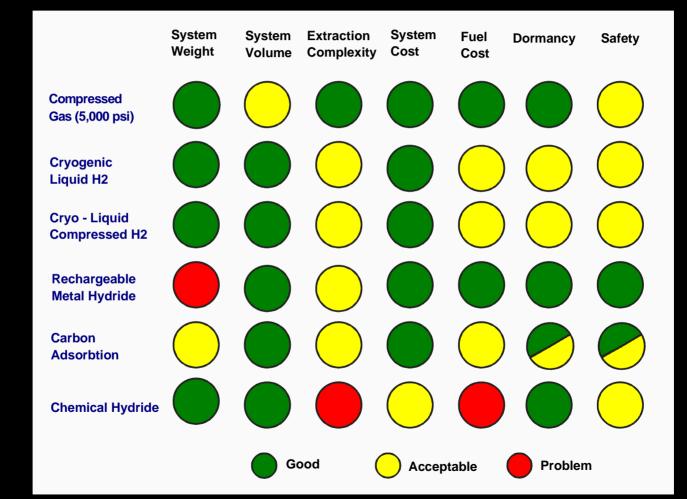
US DOE Strategy




FCEV Storage System

29

Comparative Volumes and Weights of a FCEV Hydrogen Storage System (Capable of 560 km (350 mi) Range – Compact Sedan)



Storage Systems

